Abstract
The effect of structural characteristics (ferrite, ferrite + pearlite, sorbite) including morphology, size and distribution of nonmetallic inclusions of different morphology, sizes and distribution, on ductile–brittle transition in structural steels is considered. It is shown that an elementary ductile microcrack is initiated by particles of critical size. For steels with ferrite-pearlite and sorbite microstructure, the particle size (carbide, nitride and nonmetallic inclusions) is almost the same. The ductile–brittle transition is caused by competition of the size of the brittle and ductile (pits) microcracks. As a result, the critical brittleness temperature T c in simplified form looks like $$ {T}_c={T}_c^0+B{\Lambda}_d^{1/2}/{\Lambda}_b, $$ where elementary microcracks Λ b and Λ d correspond to the size of a brittle crack of transcrystalline cleavage (Λ b ) and the size of ductile crack (Λ d ), Т c 0 reflects the contribution of different strengthening mechanisms to metal yield strength: dislocation, solid solution, grain size, precipitation hardening, and others, and B is a coefficient taking into account the stress-strain state in the fracture zone. As part of this model of failure, it becomes clear why for hardened steel the grain size does not change up to the recrystallization temperature, and yield strength and the value of T c have a complex dependence on the tempering temperature. Since the steel has particles of different sizes, they initiate the occurrence of pits of different sizes. The larger the particle, the sooner a micropore originates around it and pit growth is faster. A wide range of pit sizes arises that causes a wide range of T c values. A close connection is demonstrated for the width of the ΔT c ductile–brittle transition temperature range with a change in the distance between particles, including between pearlite colonies. This relationship can be positive and negative, which is confirmed by experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.