Abstract

In this study, (-)-Epigallocatechin-3-O-gallate (EGCG) esterification reaction was catalyzed by Novozym 435, Lipozyme RM, Lipozyme TLIM, and lipase Amano 30SD in acetonitrile. Fourier transform infrared spectroscopy (FTIR) and molecular dynamic (MD) simulations were used to analyze the structural stability of different lipases in acetonitrile and their effect on EGCG esterification reaction. The results showed that conversion rate of EGCG catalyzed by Lipozyme RM was the highest, followed by Lipozyme TLIM. FTIR indicated that the secondary structure of Lipozyme RM was the most stable. MD simulations suggested that whole structural stability of Lipozyme RM in acetonitrile was superior to Novozym 435 and lipase Amano 30SD and similar to Lipozyme TLIM due to their similar conformation, while the active site of Lipozyme RM is more flexible than that of Lipozyme TLIM, which indicated that lipase with stable whole structure and flexible active site may be more conducive to the esterification of EGCG in acetonitrile. This study provided a direction for rapidly screening lipase to synthetize EGCG or other polyphenols esterified derivatives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call