Abstract

The role of Sr/Ca ratio, which was varied from 3/6 to 9/0, on the structure, crystallization behavior and properties of diopside-based glass and glass-ceramic sealants targeted to solid oxide fuel cell (SOFC) applications was evaluated. The structural changes undergone by glass-powder compacts during isothermal heat treatment at 850 °C for 1–1000 h were investigated using XRD (X-ray diffraction) analysis, including quantitative Rietveld refinement, and MAS-NMR (magic angle spinning nuclear magnetic resonance) techniques. The tendency towards crystallization was retarded with increasing Sr/Ca ratio. Diopside-based phases, strontium akermanite and magnesium silicate were developed under various heat-treatment conditions. MAS-NMR analysis of glasses heat treated for 1000 h revealed that with increasing Sr/Ca ratio, Q1 and Q4 structural units were formed at the expenses of Q2 units. The good thermal stability and chemical compatibility of the new glass-ceramic compositions coupled with their mechanical reliability and high electrical resistivity make them attractive for further experimentation as sealants for SOFCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.