Abstract

In the modern broiler industry, leg and gait disorders are considerable problems. Fast-growing broilers are especially susceptible to bone abnormalities, causing major problems for broiler producers. Strontium ranelate (SrR) has been used successfully for the treatment of osteoporosis in humans. In addition, cerium oxide (CeO) is an anti-stress agent applied in the biological system. This study was conducted to investigate the effect of SrR, CeO, and their combinations on tibia quality in broilers. A total of 384 one-day-old Ross chicks were divided into six treatments, with four replicates per treatment (16 birds per replicate). The control group was fed a standard diet, and other groups were fed SrR at levels 450, 900mg/kg feed, CeO at levels 300 and 600mg/kg feed and a combination of 450 SrR + 300 CeO mg/kg feed. Bone mineral density (BMD), bone mineral content (BMC), bone strength (BS), tibia area, tibia weight, bone Length, bone diameter, minerals in tibia bone of male broilers, alkaline phosphatase gene (ALP) and osteocalcin gene (OC) in male broilers were analysed. The results showed that the addition of SrR and CeO had no significant influence (p > 0.01) on BMD, BMC, BS, bone weight, bone length and bone diameter. While there was a significant interaction between sex and treatments, especially in the combination group, BS in females significantly (p < 0.01) increased compared to the control group. Generally, females were found to be more responsive to treatments than males. Significant increases in gene expression were noticed in OC with the addition of low levels of SrR and CeO and mixed group compared to the control. The gene expression of ALP was increased significantly only in a combination group compared to the control group. It is concluded that SrR and CeO can be used as beneficial additives in the feed to improve the tibia quality of broilers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.