Abstract

The interaction between strong THz radiation from a free electron laser and an electron sheet in a high-mobility, low-density, GaAs/AlGaAs structure has been investigated in magnetotransport experiments over a wide range of wavelengths, intensities, magnetic fields, and temperatures. Photovoltage and photocurrent effects are evident in both longitudinal and transverse potential differences. Broad cyclotron resonance is observed to high temperature and connected with a decrease in electron density. The change in electron temperature under THz radiation is estimated from changes in the magnitude of the magnetoresistivity oscillations at low lattice temperature. The effect of the magnetic field is to suppress the rise in electron temperature relative to the zero field case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.