Abstract

The Vlasov equation is used to determine the dispersion relation for the eigenmodes of magnetized nuclear and neutral stellar matter, taking into account the anomalous magnetic moment of nucleons. The formalism is applied to the determination of the dynamical spinodal section, a quantity that gives a good estimation of the crust-core transition in neutron stars. We study the effect of strong magnetic fields, of the order of $10^{15}-10^{17}$ G, on the extension of the crust of magnetized neutron stars. The dynamical instability region of neutron-proton-electron ($npe$) matter at subsaturation densities is determined within a relativistic mean field model. It is shown that a strong magnetic field has a large effect on the instability region, defining the crust-core transition as a succession of stable and unstable regions due to the opening of new Landau levels. The effect of the anomalous magnetic moment is non-negligible for fields larger than 10$^{15}$ G. The complexity of the crust at the transition to the core and the increase of the crust thickness may have direct impact on the properties of neutrons stars related with the crust.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.