Abstract

Time-resolved intensity measurements of the x-ray equatorial reflections were made during twitch contractions of frog skeletal muscles, to which stretches or releases were applied at various times. A ramp stretch applied at the onset of a twitch (duration, 15 ms; amplitude, approximately 3% of muscle length) caused a faster and larger development of contractile force than in an isometric twitch. The stretch accelerated the decrease of the 1.0 reflection intensity (I1,0). The magnitude of increase of the 1,1 reflection intensity (I1,1) was reduced by the stretch, but its time course was also accelerated. A release applied at the peak of a twitch or later (duration, 5 ms; amplitude, approximately 1.5%) caused only a partial redevelopment of tension. The release produced clear reciprocal changes of reflections toward their relaxed levels, i.e., the I1,0 increased and the I1,1 decreased. A release applied earlier than the twitch peak had smaller effects on the reflection intensities. The results suggest that a strength applied at the onset of a twitch causes a faster radial movement of the myosin heads toward actin, whereas a release applied at or later than the peak of a twitch accelerates their return to the thick filament backbone. The results are discussed in the context of the regulation of the myosin head attachment by calcium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.