Abstract

In this paper, we analyze the effect of stress-fiber inclusion on the stiffness of an actin random network. To do this, use a discrete random network model to analyze the elastic response of this system in terms of apparent Young’s modulus. First, we showed that for a flat-ended cylindrical AFM indenter the total indentation force has a linear relation with the indentation depth and the indenter radius in a fibrous network. Using this relation, we concluded that the stiffening effect of the stress-fiber on the fibrous network has a range of effectivity and surprisingly, the stiffening is not maximum when the stress-fiber is immediately under the indenter but, when has a certain distance with it. In addition, when the stress-fiber axis has a specific distance from the loading region, it has negligible effect on the local stiffness of the network. These results shed light on some aspects of the widely used AFM stiffness measurements of cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.