Abstract

The effects of stress state on the twin structures and kinetics in twinning-induced plasticity (TWIP) steel have been investigated to understand the twinning behaviors in more detail. Twinning behaviors of tension, compression, wire drawing, and caliber rolling were evaluated and compared using the EBSD technique, TEM measurement, and Schmid factor analysis. Twin structures, such as twin thickness, twin variant, twin shape, and twin kinetics were different with stress states. The specimen under compressive stress had wavy-shaped twins, less twin variant, lower twin thickness, and more twin volume fraction in comparison with the specimen under tensile stress. The different structures and kinetics of deformation twin with stress state were highly related to the grain rotation during plastic deformation. Under tensile stress, the grain rotation to orientation, twinning-favored regions by Schmid factor analysis, encouraged the lateral growth of twins, more twin variants, and straight-type twins, while the grain rotation to orientation under compressive stress suppressed the twin growth and twin variant and developed wavy-shaped twins. Drawn wire and caliber-rolled wire had both twin features under tensile and compressive stress states and higher twin volume fraction since complex stress state that combined tension and compression was applied in these processes. The hardness values were strongly related to the twin volume fraction with strain and stress state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call