Abstract

Bone mineralization is critical to maintaining tissue mechanical function. The application of mechanical stress via exercise promotes bone mineralization via cellular mechanotransduction and increased fluid transport through the collagen matrix. However, due to its complex composition and ability to exchange ions with the surrounding body fluids, bone mineral composition and crystallization is also expected to respond to stress. Here, a combination of data from materials simulations, namely density functional theory and molecular dynamics, and experimental studies were input into an equilibrium thermodynamic model of bone apatite under stress in an aqueous solution based on the theory of thermochemical equilibrium of stressed solids. The model indicated that increasing uniaxial stress induced mineral crystallization. This was accompanied by a decrease in calcium and carbonate integration into the apatite solid. These results suggest that weight-bearing exercises can increase tissue mineralization via interactions between bone mineral and body fluid independent of cell and matrix behaviours, thus providing another mechanism by which exercise can improve bone health. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.