Abstract

AbstractLow-cycle fatigue (LCF) of spruce under parallel-to-grain compression was investigated to simulate the damage that occurs during extreme events such as hurricanes. Load control was used, with peak stress levels of 75%, 85% and 95% of static compressive strength (Cmax). Changes in the residual cyclic modulus, cyclic creep strain and modified work density were correlated with the number of load cycles to assess their suitability as damage indicators. Creep tests were also carried out and the strain compared with cyclic creep strain under LCF load. Fatigue and creep tests had a total duration of 10 min. A three-element mathematical model was used to predict the cyclic creep strain. Some key findings were that: (1) the residual cyclic modulus varies with the number of load cycles at a given stress level and decreases with an increase in stress level; (2) cyclic creep strain and pure creep strain are strongly influenced by the peak stress level; and creep specimens fail but fatigue specimens do not at a 95% peak stress level; and (3) the three-element mathematical model is appropriate for predicting cyclic creep strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.