Abstract
The creep and stress rupture behavior of a normalized 1.25 pct chromium-0.5 pct molybdenum steel has been investigated over a temperature (T) range of 510 to 620°C and a stress(σ) range of 65 to 425 MN/m2. The creep rate ( $$\dot \in $$ ) and time to rupture (t r ) data have been analyzed in terms of the general expression $$\dot \in $$ ort r -A σn exp (Q/RT), whereA is a constant,n is the power exponent of stress,Q is an empirical activation energy for the rate controlling process andR is the universal gas constant. At each temperature, the logarithmic plots of creep rate and time to rupture as functions of stress consist of two linear segments, separating the data into low stress and high stress regimes. The stress exponent has approximate values of 4 and 10 in the low stress and high stress regimes respectively in the appropriate expressions for both creep rate and for time to rupture. The activation energy has values of 367 and 420 kJ/mole in the low stress regime for time to rupture and creep rate respectively. In the high stress regime, the respective values of activation energy are 581 and 670 kJ/mole. Fractographic observations show that the changes from low stress to high stress behavior in creep rate and time to rupture approximately coincide with the transition in fracture mode from intergranular to transgranular cracking as well as with the transition in the rupture ductility from a region of linear variation with stress to one of constant ductility. These observations suggest that the transition from low stress to high stress behavior may be associated with a change in deformation mode from predominantly grain boundary sliding at low stress to transgranular matrix deformation at high stress. Analysis of the creep rate data based on this premise enables calculation of the ratio of the contributions of the grain boundary sliding mode to the total deformation (e gb /e T ) at various values of stress and temperature. Results of this analysis are consistent with numerous experimental observations reported in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.