Abstract

In this study, the effect of the stratified interface instability on the thermal focusing effect in two-layer corium pool were investigated by numerical simulations performed with CFD code Fluent. The Rayleigh numbers (Ra′) obtained in this study range from 109 to 1015. By setting different decay heat power and turbulence intensity, crust of different melting degree at stratified interface can be obtained. Through the comparison of the corium pools with the crust of different melting degree, the differences of temperature distribution and boundary heat flux distribution are obtained. The coupling mechanism of two layers of corium pools and a new criterion for the occurrence of stratified interface instability are also presented. The results show that when the crust is slightly damaged, the thermal focusing effect is intensified by the reduced thermal resistance due to the crust failure at the interface and the unevenness of the thickness of the crust on the side wall of the metal layer, and if the crust is highly damaged, the thermal focusing effect is weaken by the melting of the crust at the wall of the lower head. The results of this study can provide reference for reactor IVR (In-Vessel Retention) safety analysis and optimization design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call