Abstract

Accelerator magnets employing Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn Rutherford cables are more susceptible to conductor degradation than Nb-Ti magnets. Recent measurements on a Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn accelerator magnet have revealed unexpected behaviour such as decaying voltages at constant current plateaus of V-I measurements, inverse ramp rate and temperature dependence of quench currents, and anomalous quench propagation measured by so-called quench antennas. Numerical modelling has shown that these anomalies can be explained by an inhomogeneous degradation in the Rutherford cable, in which a subset of strands is fully or partially degraded. In this paper, we study how this type of degradation can affect the early stages of quench propagation. With the aid of a network model, we show how quench antenna signals can be used to diagnose inhomogeneous conductor degradation in the Rutherford cable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call