Abstract
The hydrogen transport behavior together with hydrogen embrittlement (HE) in hydrogen-charged type 304 and 316 stainless steels during deformation was investigated by combined tension and outgassing experiments. The specimens were thermally hydrogen-charged in 30 MPa hydrogen at 473 K for 48 h. HE of hydrogen-charged type 304 steel decreases with increasing prestrain and almost no HE is observed in hydrogen-charged type 316 steel. Prior strain-induced α′ martensite formed by the prestrain at 208 K has little relation with HE, while dynamic α′ martensite formed during deformation after the prestrain shows obvious HE. The differences in hydrogen diffusivity and solubility between α′ martensite and austenite (γ) induce hydrogen diffusion from dynamic α′ martensite and then its accumulation at the boundary between the α′-rich and γ-rich zones, resulting in crack initiation at the boundary between the α′-rich and γ-rich zones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.