Abstract

AbstractWe have fabricated freestanding wire (air‐bridge) structures with a bowed shape by introducing a strain layer to vary the strain around quantum dots. The photoluminescence peak energy shift following the shape change of the bridge can be observed for individual InGaAs quantum dots. We find systematic dependence of the peak shift on the dot position along the growth direction. The dependence of the peak shift is explained by strain distribution in the bridge. The strain distribution in the bridge as well as in the dot is calculated using a finite element method. Using the strain data, the electronic structures of the dots embedded in the bridge structures are calculated within the effective mass approximation. The calculated energy shifts agree well with the experimental ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.