Abstract

The effects of rate of strain on strength and deformation characteristics of soil–lime were investigated. Five strain rates (0.1, 0.8, 2.0, 4.0 and 7.0 %/min), five lime contents (0, 3, 6, 9 and 12 %) by dry soil weight and three cell pressures (100, 200 and 340 kN/m2) were carried. Triaxial tests, under unconsolidated condition, were used to study the effect of strain rate on strength and initial modulus of elasticity of soil and soil–lime mixture after two curing periods 7 and 21 days, respectively. A total of 405 triaxial specimens have been tested, where 225 specimens have been tested with first curing period (7 days). The testing program includes nine specimens for each strain rate, and each lime content was carried out, including natural soil with zero lime content. Another set of triaxial tests with a total of 180 specimens for the second curing period (21 days) was prepared at optimum moisture content, and the corresponding maximum dry density was also tested. The effects of strain rate and curing period on each of stress–strain behavior, type of failure, deviator stress at failure, cohesion and angle of internal friction and initial modulus of elasticity were studied thoroughly for the natural soil as well as soil–lime mixtures. For natural soil, the test results showed that the undrained shear strength, the initial modulus of elasticity and the cohesion increase significantly as the strain rate increase, while for soil–lime mixture at different curing periods, the undrained shear strength, initial modulus of elasticity and the cohesion increases to a maximum and then decreases as the strain rate and lime content increase. Also, the same variables and angle of internal friction increase with increasing curing period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.