Abstract

In this paper, the effect of strain rate (in the domain of 0.001 to 10 s−1) on dynamic recrystallization (DRX) kinetics in a nitrogen-enhanced 316L(N) austenitic stainless steel during high temperature [≥1123 K (≥850 °C)] deformation is reported. In the low strain rate domain (i.e., <0.1 s−1), the DRX is predominantly governed by higher growth of DRX grains resulting in a higher DRX fraction and larger DRX grain size. On the other hand, DRX at higher strain rates (i.e., ≥1 s−1) is mainly controlled by higher nucleation resulting in higher DRX fraction with a finer grain size. In the intermediate strain rate regime of 0.1 s−1, sluggish kinetics of DRX is observed since neither the nucleation nor the growth of DRX grains is predominant. The annealing twinning event, which may accelerates the DRX kinetics, is also observed to occur more frequently during the low and high strain rate deformations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call