Abstract

Synthesis gas or “Syngas” is being recognized as a viable energy source worldwide, particularly for stationary power generation due to its wide flexibility in fuel sources. There are gaps in the fundamental understanding of syngas combustion and emissions characteristics, especially at elevated pressures, high strain rates and in more practical conditions. This paper presents a numerical and experimental investigation to gain fundamental understanding of combustion and emission characteristics of syngas with varying composition, pressure and strain rate. Two representative syngas fuel mixtures, 50% H2 / 50% CO and 5% H2 / 95% CO (% vol.), are chosen, three detailed chemical kinetic models are used namely, GRI 3.0, Davis et al. and Li et al. mechanisms. Davis et al. mechanism agrees best with the experimental data hence is used to simulate the partially premixed flame structures at all pressures. Results indicate that for the pressure range investigated, a typical double flame structure was observed characterized by a rich premixed reaction zone (RPZ) on the fuel side and a nonpremixed reaction zone (NPZ) at the oxidizer side nozzle with the stabilizing due to the H2 chemistry rather than the CO chemistry. Sensitivity analysis to mass burning rates for unstretched laminar flame shows that flames are more sensitive to H2 chemistry. For both representative mixtures an increase in pressure leads to a significant increase in NO due to increase in flame temperature. The emission index for these flames is also found to follow a similar behavior with pressure. Although flame temperatures were higher for flame A, total NO is lower for these flames due to increases in reburn characteristics. Thermal route dominates NO production while, prompt route is negligible. Experimental analysis on the stability of nonpremixed syngas/air flames showed that the flames were very stable for the range of strain rates investigated. At low strain rates it required 0.5% H2 to establish a stable flame.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call