Abstract
Effect of strain rate change and reinforcement ball milling on the compressive response of Mg composites is investigated in this work. Quasi-static response was determined using a servo hydraulic MTS machine while dynamic response was assessed by Split Hopkinson Pressure Bar. The presence of either as-received or ball milled Al particles significantly assisted in improving compressive response of Mg in both regimes, compared to monolithic Mg. In the quasi-static regime, the Mg/1.626Al composite containing ball milled Al particles exhibits significantly higher compressive yield strength, ultimate compressive strength and work of fracture of (+76, +87% and +58%) compared to monolithic Mg. However, with a fixed amount of Al, composites containing ball milled particles show a higher strength compared to composites containing as-received particles. Results also revealed that the tremendous increase in strain rate led to an increase in flow stress of all synthesized material while the failure strain was marginally compromised.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.