Abstract

First-principles calculation has been performed to investigate the effect of strain on the magnetic moment of Fe-doped MoTe2 monolayer. Our results show that the Fe-doped MoTe2 monolayer is semiconductor with the magnetic moment of 2.037 [Formula: see text]. By analyzing the density of states, we find that the magnetic moment is mainly contributed by the Fe atom. When the biaxial strain is applied along the layer, the results show that the magnetic moment is almost unchanged when the compressive strain is under 5% and tensile strain is under 7%. However, as the strain increases, the magnetic moment decreases to almost zero with compressive strain larger than 7%, and the magnetic moment begins to increase with the tensile strain larger than 8%, which indicates the different effects of compressive strain and tensile strain on the magnetism of Fe-doped MoTe2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.