Abstract

We analyze the strain induced changes in the low temperature multisubband electron mobility mediated through the intersubband interactions in a pseudomorphic GaAs/InxGa1−xAs coupled double quantum well structure. We consider the non-phonon scattering mechanisms and study the effect of strain on them. We show that strain reduces the mobility due to ionized impurity (imp-) scattering μimp but enhances the mobility due to interface roughness (IR-) scattering μIR. For alloy disorder (AL-) scattering as long as the lowest subband is occupied, the effect of strain enhances the mobility μAL. However, once the second subband is occupied, there is almost no change, rather decrease in μAL for larger well widths. It is gratifying to note that for single subband occupancy, the effect of strain enhances the total mobility μ. On the other hand, for double subband occupancy, initially there is almost no change, but with increase in well width the total mobility reduces. We vary the In composition x from 0.15 to 0.2 and 0.25 and the barrier width between the two wells to analyze their effects on the mobility which shows interesting results. Our study of multisubband mobility can be utilized for the low temperature device applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.