Abstract
First-principles calculations are performed to investigate the effect of strain on the electrochemical performance of Janus MoSSe monolayer. The calculation focuses on the specific capacity, intercalation potential, electronic structure, and migration behavior of Li-ion under various strains by using the climbing-image nudged elastic band method. The result shows that the specific capacity is nearly unchanged under strain. But interestingly, the tensile strain can cause the intercalation potential and Li-ion migration energy barrier increase in MoSSe monolayer, whereas the compressive strain can lead to the intercalation potential and energy barrier decreasing. Thus, the rate performance of the MoSSe anode is improved. By analyzing the potential energy surface of MoSSe surface and equilibrium adsorption distance of Li-ion, we explain the physical origin of the change in the intercalation potential and migration energy barrier. The increase of MoSSe potential energy surface and the decrease of adsorption distance caused by tensile strain are the main reason that hinders Li-ion migration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.