Abstract

Abstract The effect of tropical cyclone (TC) size on TC-induced sea surface temperature (SST) cooling and subsequent TC intensification is an intriguing issue without much exploration. Via compositing satellite-observed SST over the western North Pacific during 2004–19, this study systematically examined the effect of storm size on the magnitude, spatial extension, and temporal evolution of TC-induced SST anomalies (SSTA). Consequential influence on TC intensification is also explored. Among the various TC wind radii, SSTA are found to be most sensitive to the 34-kt wind radius (R34) (1 kt ≈ 0.51 m s−1). Generally, large TCs generate stronger and more widespread SSTA than small TCs (for category 1–2 TCs, R34: ∼270 vs 160 km; SSTA: −1.7° vs −0.9°C). Despite the same effect on prolonging residence time of TC winds, the effect of doubling R34 on SSTA is more profound than halving translation speed, due to more wind energy input into the upper ocean. Also differing from translation speed, storm size has a rather modest effect on the rightward shift and timing of maximum cooling. This study further demonstrates that storm size regulates TC intensification through an oceanic pathway: large TCs tend to induce stronger SST cooling and are exposed to the cooling for a longer time, both of which reduce the ocean’s enthalpy supply and thereby diminish TC intensification. For larger TCs experiencing stronger SST cooling, the probability of rapid intensification is half of smaller TCs. The presented results suggest that accurately specifying storm size should lead to improved cooling effect estimation and TC intensity prediction. Significance Statement Storm size has long been speculated to play a crucial role in modulating the TC self-induced sea surface temperature (SST) cooling and thus potentially influence TC intensification through ocean negative feedback. Nevertheless, systematic analysis is lacking. Here we show that larger TCs tend to generate stronger SST cooling and have longer exposure to the cooling effect, both of which enhance the strength of the negative feedback. Consequently, larger TCs undergo weaker intensification and are less likely to experience rapid intensification than smaller TCs. These results demonstrate that storm size can influence TC intensification not only from the atmospheric pathway, but also via the oceanic pathway. Accurate characterization of this oceanic pathway in coupled models is important to accurately forecast TC intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call