Abstract
Stony soils are commonly found worldwide and are considerably studied for their hydrological characteristics and effect on soil erosion. Water flow velocity is an important parameter in understanding the effect of stone content on hydrodynamics and soil erosion. In this study, laboratory experiments were used to measure rill flow velocity by using electrolyte tracer method under different hydraulic conditions: flow rates of 1, 2, 4, and 8L/min, slope gradients of 5°, 10°, 15°, and 20°, and stone mass contents amounting to 0%, 10%, 20% and 50%. Nine sensors, which were 1m apart along the 8m long rill, were used to measure flow velocity by tracing solute transport. Measured flow velocity increased with slope gradient and flow rate. The highest increase in flow velocity was measured from 15° to 20° which were also affected by flow rate. Effects of discharge rate on flow velocity presented the largest difference when flow rate increased from 2L/min to 8L/min at slope gradients higher than 5°. The effects of different factors were quantified by a regression model with high accuracy of 0.99. Maximum flow velocity of water was predicted at 15.23% of stone content. Flow velocity increased with 0–15.23% of stone content but decreased at higher values. This study aims at further understanding the hydrodynamics of soil erosion and sediment transport behaviors in hillslopes with different stone contents to obtain information for quantifying soil erosion on stony slopes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.