Abstract

Ni-based alloys, such as alloys 690 and 625, are widely used in the nuclear industry as structural components, because of their desirable mechanical properties and resistance to stress corrosion cracking. However, in some high chromium alloys, a disorder-order phase transformation near 33 at% Cr, is known to decrease ductility and fracture toughness. In this study, the ordering transformation is investigated in Ni–Cr binary model alloys to better understand the effects of composition. Model alloys with different stoichiometries (Ni/Cr = 1.8, 2.0, 2.2, 2.4) were isothermally aged up to 10,000 h at three temperatures (373 °C, 418 °C, and 475 °C) and characterized by transmission electron microscopy (TEM), microhardness, and synchrotron-based X-ray diffraction (XRD). TEM results show the evolution of the Ni2Cr (MoPt2-type) ordered precipitates between 3000 h and 10,000 h with corresponding size of ∼10–20 nm. Microhardness testing results show that off-stoichiometry (Ni/Cr ≠ 2.0) alloys exhibit a smaller change with ordering compared to the stoichiometric (Ni/Cr = 2.0) alloy at all temperatures. XRD quantifies ordering induced lattice contraction in the matrix structure and the size of the ordered precipitates. No BCC Cr was detected by XRD or TEM during characterization in the range of 29.83–35.66 at% Cr after 10,000 h of aging, confirming that all of the hardening can be attributed to the development of Ni2Cr in alloys ranging from Ni/Cr of 1.8 to Ni/Cr of 2.4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.