Abstract

We present a comprehensive investigation into the effect of choosing the stochastic control parameters in a simplified—Parker dynamo model. Through considering the manifold of marginal stability, i.e., the region of parameter space where the mean growth rate is zero, we show that stochastic fluctuations are not prohibitive to dynamo. Furthermore, by directly comparing results obtained by periodic and Gaussian coloured noise alpha with identical characteristic time-scales and fluctuating amplitudes, we find that the transition to dynamo is significantly eased for stochastically fluctuating alpha. The effect of stochasticity in magnetic diffusion is also investigated, highlighting the importance of resonance between poloidal and toroidal magnetic fields on the growth rate. Furthermore, we show that probability density functions of the growth-rate, magnetic field, and magnetic energy can provide a wealth of useful information regarding the dynamo behaviour/intermittency. Finally, the statistical properties of the dynamo such as temporal correlation and fluctuating amplitude are found to be dependent on the distribution of the fluctuations in stocastic parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call