Abstract
A stochastic dead-space model for impact ionization is developed and used to study the effect of the soft nature of the ionization capability of carriers on the excess noise factor of avalanche photodiodes. The proposed model is based on the rationale that the gradual, or soft, transition in the probability density function (PDF) for the distance from birth to impact ionization can be viewed as that resulting from uncertainty in the dead space itself. The resulting soft PDF, which is parameterized by a tunable softness parameter, is used to establish the limitations of the existing hard-threshold ionization models in ultrathin multiplication layers. Calculations show that for a fixed operational gain and fixed average dead space, the excess noise factor tends to increase as a result of the softness in the PDF in very thin multiplication layers (viz, <70 nm), or equivalently, under high applied electric fields (viz., >800 kV/cm). A method is proposed for extracting the softness parameter from noise versus multiplication measurements.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.