Abstract
The primary purpose of this study is to determine the extent to which the size and shape of the wind tunnel sting affect the accuracy of the base pressure corrections applied to measured axial force. The study also includes an assessment of the overall accuracy of the corrections. To accomplish these goals, Computational Fluid Dynamics is used to simulate a simplified version of the geometry of the Space Launch System Block 1B Cargo configuration, paired with a range of wind tunnel sting sizes, over a variety of ascent flight conditions. The base pressure correction method used in the wind tunnel is emulated on the base pressures from the simulated flows and results are compared to direct integration of the base pressures. Differences in results between the two methods provides an assessment of the accuracy of the base force correction method and how that accuracy is affected by sting size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.