Abstract

Using recombinant microorganisms S. cerevisiae GRF18/YEp 5117α, expressing bovine adrenocortical cytochrome P450cl7, we have studied the effect of various modifiers of steroid biosynthesis on the relationship between reactions of the 17α-hydroxylation and 20α-reduction of progesterone. Dexamethasone and metyrapone had no effect on the reaction of progesterone 17α-hydroxylation and 20α-reduction of 17α-hydroxyprogesterone. Mifepriston and danazol did not covalently modify amino acid residues of the cytochrome P450cl7 or its heme group under the conditions of progesterone biotransformation by recombinant yeasts. Ketokonazole, mifepriston and danazol were found to be low-affinity competitive inhibitors, but the 20-dihydroderivatives of progesterone were mixed type inhibitors of the cytochrome P450cl7. All modifiers used did not affect the functional properties of the yeast analog of 20α-hydroxysteroid dehydrogenase. Based on the effect on catalytic parameters of the cytochrome P450cl7, the all modifiers used can be arranged in the following order: 20β-dihydroprogesterone (maximal effect) > mifepriston = ketokonazole > 20α-dihydroprogesterone > danazol > dexamethasone, metyrapone (without effect).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call