Abstract

Alkyl sulfoxide groups were introduced into the branch chain terminals of a hole-transporting material (HTM) Z34 with different numbers and positions to design four new Y-shaped HTMs: ZT1, ZT2, ZT3 and ZT4. The effects of steric hindrance and number of substituents on the transfer and interface properties of the Y-shaped HTMs were investigated theoretically. Calculations reveal that the introduction of alkyl sulfoxide increases the distribution of intramolecular holes and orbital overlap between the HOMOs of the dimers. The electronic coupling was greatly improved owing to the increased distribution of holes and orbital overlap. ZT1 shows small steric hindrance when one alkyl sulfoxide is introduced into the top branch chain, which leads to translation π-π stacking. ZT2 and ZT4 show slightly greater steric hindrance when two or four alkyl sulfoxide groups are introduced into the side branch chains, which leads to face-to-face stacking. While ZT3 shows large steric hindrance when three alkyl sulfoxide groups are introduced into the top and side branch chains, which causes head-to-head stacking. With the increase in number of alkyl sulfoxide groups, the steric hindrance of the molecule increases and the hole mobility decreases. ZT1 achieves the highest hole mobility (2.63 × 10-2 m2 V-1 s-1) that is two orders of magnitude higher than that of Z34 (1.36 × 10-4 m2 V-1 s-1) owing to the optimal balance between the number of alkyl sulfoxide groups and steric hindrance. The HTM/CH3NH3PbI3 adsorbed system was also simulated to characterize the interface properties. Enhanced interface interaction was achieved in the HTM/perovskite systems of ZT2 and ZT3. The orbital distribution of the HTM/perovskite cluster indicates that the new HTMs can promote hole migration and prevent internal electron-hole recombination. The present work not only evaluates the reliable relationship between the structure and properties of new HTMs, but also provides a valuable design strategy for efficient Y-shaped HTMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.