Abstract

The continuous Bonhoeffer–van der Pol (BVP for short) oscillator is transformed into a map-based BVP model by using the forward Euler scheme. At first, the bifurcations and chaos of the map-based BVP model are investigated when the step size varies as a bifurcation parameter. By using the fast-slow decomposition technique, a two-parameter bifurcation diagram is obtained to give insight into the effect of the step size on bifurcations and chaos of the map-based BVP model. The investigation shows that the period-doubling bifurcation is dependent on the step size, while the saddle-node bifurcation is independent of the step size. Second, when the fast–slow decomposition technique cannot be used, we rigorously prove that in the map-based BVP model there exists chaos in the sense of Marotto when the discrete step size varies as a bifurcation parameter. These results show that the discrete step sizes play a vital role between the continuous-time dynamical system and the corresponding discrete dynamical system. Much attention should be paid on the step size when a map-based neuron model is used as an alternative to a continuous neuron model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call