Abstract

Plant water status plays a major role in glasshouse cultivation of tomato (Solanum lycopersicum L.). New climate control technologies alter the glasshouse climate and make it less dependent on solar radiation. However, irrigation strategies are still often based on solar radiation sums. In order to maintain a good plant water status, it is interesting to use plant-based methods such as monitoring sap flow (F) or stem diameter variations (SDV). Though SDV give important information about plant water status, an unambiguous interpretation might be difficult because other factors such as stem age, fruit load and sugar content of the stem also affect SDV. In this study, an analysis of the effect of stem age on the response of SDV to water status was performed by calibration of a mechanistic flow and storage model. This allowed us to determine how parameter values changed across the growing season. Tissue extensibility decreased over the growing season resulting in a lower growth rate potential, whereas daily cycles of shrinking and swelling of the stem became more pronounced towards the end of the growing season. Parameters were then adapted to time-dependent variables and implemented in the model, allowing long term simulation and interpretation of SDV. Sensitivity analysis showed that model predictions were very sensitive to initial sucrose content of the phloem tissue and the parameters related to plastic growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call