Abstract

Due to large-scale geological deposition processes, slope structures are often stratified, which means that the spatial distribution of the parameters involved in slope reliability evaluation is statistically anisotropic. This paper studies the effect of the statistical anisotropy of undrained shear strength on the probability of slope failure (pf) based on the Monte Carlo simulation. The results show that for the horizontally layered slope, the larger the horizontal correlation scale of undrained shear strength (λx) is, the larger pf is, especially when λx is smaller than the slope length; for the vertically layered slope, the larger the vertical correlation scale (λy) is, the smaller pf is, especially when λy is smaller than the slope height. Additionally, the mechanism of the above results is discussed by analyzing the displacement distribution at different correlation scales. The findings indicate that in the reliability evaluation of undrained slopes in stratified structures, either underestimation of λx or overestimation of λy leads to an unconservative estimate of pf, resulting in an overestimation of the slope stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.