Abstract

A series of terrestrial, parabolic-flight and on-orbit experiments on thermocapillary-driven flows in free liquid films are carried out. We focus on the basic flow patterns induced in the film formed in a rectangular hole by varying the film volume in order to make a comparison with the results of the fluid physics experiments under microgravity conditions conducted by one of the authors, Pettit, on the International Space Station. The free liquid film is formed in a rectangular hole of O(0.1 mm) in thickness under a designated temperature difference between the end walls. The temperature dependence of the surface tension results in a non-uniform surface tension distribution over the free surfaces. A liquid generally has a negative temperature coefficient of surface tension; i.e., the fluid over a free surface is driven from a higher-temperature region to a lower-temperature region. In the case of a thin free liquid film with two free surfaces, however, an unusual flow pattern is realized. That is, the fluid seems to be driven toward the heated region from a colder region. In order to understand the physical mechanism of this behavior in the free liquid film, a series of on-orbit and ground experiments were conducted. We indicate several flow patterns in the film and corresponding film profiles as well as the surface temperature distribution. We also try to illustrate the cross-sectional flow structures in the thin free liquid film with two free surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call