Abstract
The effect of starvation on traction and film thickness behavior in thermo-EHL rolling/sliding line contacts has been studied using full EHL simulations. The simulations employed the free volume equation for viscosity–pressure–temperature relationship and Carreau viscosity model to describe the shear-thinning behavior of the EHL lubricant. The simulation results were used to develop equations for estimating the factors by which the traction coefficient increases and film thickness decreases as a function of the degree of starvation. For the situations involving inadequate lubricant supply at the inlet, these factors can be used to correct the traction coefficient and central film thickness predicted with the assumption of fully flooded condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.