Abstract

An experimental study on the reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene in supercritical carbon dioxide is presented. A 38 mL, high-pressure view cell with two frontal and two lateral sapphire windows was used as reactor. Poly(styrene-block-dimethylsiloxane) was used as stabilizer. The performance as RAFT controllers of S-thiobenzoyl thioglycolic acid, methyl naphthalene dithiobenzoate, 4-methyl allyl dithiobenzoate, and benzyl-N,N-dimethyldithiocarbamate was compared. The effect of stabilizer concentration and controller structure and concentration on polymerization rate and molecular weight development was analyzed. Good performance was obtained with the first three controllers, although simultaneous high polymerization rates and low polydispersities were not possible with either of them. The performance of the fourth RAFT controller was poor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call