Abstract
Malvids anthocyanins have been proven to have a significant antioxidant activity. However, natural anthocyanins are unstable as they are easily affected by temperature, light, and pH. They can produce copigmentation with caffeic acids, leading to the improvement of color stability. The objective of this research was to survey the anti-oxidative stress functional role of stabilization malvids anthocyanins (SMA) in vivo. Changes on the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), total antioxidant capacity (T-AOC) and malondialdehyde (MDA) in the serum and liver of oxidatively damaged mice of SMA were investigated. The effects of SMA on the diversity of gut microbiota in mice with oxidatively damage were also evaluated. Compared to oxidative damaged mice, SMA increased the activities of SOD, GSH-Px, CAT and T-AOC but decreased the levels of MDA in the serum and liver. SMA significantly changed the composition and diversity of the gut microbiota. Specifically, SMA increased the relative abundance of the phylum Firmicutes and decreased the relative abundance of the phyla Bacteroidetes. At the genus level, SMA significantly increased the relative abundance of Lactobacillus, but decreased the relative abundance of Bacteroides. In addition, SMA also reversed carbohydrate metabolism and amino acid metabolism to normal levels. It indicates that SMA could protect the body from oxidative damage and be used as a potential functional food to prevent diseases related to oxidative stress. PRACTICAL APPLICATIONS: Anthocyanins provide protective effects against harmful effect of oxidative stress. Natural anthocyanins are safer and nutritious as compared to synthetic pigments. However, their stability is poor. The previous research done by this group showed that the anthocyanins content of variety of Vitis amurensis Rupr was as high as 180mg/(100g·FW), and the content of malvids anthocyanidin in its ingredients was the highest of all. Malvids anthocyanin and caffeic acid are bonded to produce stabilized malvids anthocyanins (SMA) high hydrostatic pressure technology, which has better stability. Our results indicate that SMA could increased the activities of antioxidant enzymes and altered the composition and diversity of the gut microbiota in mice with oxidative damage. The study will help to deepen the understanding of antioxidative stress mechanism of SMA and lay a foundation for the application of natural anthocyanidin in health aspect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.