Abstract
BackgroundSuo Quan Wan (SQW) is an effective traditional Chinese prescription on treated lower urinary tract symptoms (LUTS), and has been proved have modulation effect on the expression of transient receptor potential vanilloid 1 (TRPV1) in accordance with the recovery of bladder function of overactive bladder rat. This study further investigated the mechanism of SQW modulated TRPV1 signaling and bladder function using TRPV1 knockout (KO) mice.MethodsStudy was conducted using wild type and TRPV1 KO mice. The KO animals were grouped into KO group and SQW treated group. We applied in vivo cystometrogram recording techniques to analyze voiding control of the urinary bladder, as well as in vitro organ bath to study bladder distension response to various compounds, which subsequently elicited normal smooth muscle excitation. Real-time polymerase chain reaction and western blot analysis were performed to quantify the expression of TRPV1 and P2X3 in the bladder. ATP released from bladder strips was measured using the luciferin–luciferase ATP bioluminescence assay kit.ResultsKO preparation inhibited decrease micturition times, while micturition interval and volume were increased. Results of urodynamic record of the TRPV1−/− mice during NS infusion showed reduced bladder pressure and contraction which exhibited decreased response to α, β-me ATP, KCl, and carbachol and no response to CAP. The ATP released by the TRPV1−/− mice from strips of bladder smooth muscles was significantly reduced, along with no TRPV1 expression and reduced expression level of P2X3 in the bladder. SQW could increase ATP release in some degree, while had no effect on TRPV1 and P2X3 expression. SQW could improve bladder pressure slightly, while make no significantly effects on the force response to α,β-meATP, CAP, carbachol in gradient concentration, and KCl, as well as MBC and voiding activities.ConclusionsTRPV1 plays an important role in urinary bladder mechanosensitivity. The effective SQW is hard to play its proper role on bladder function of mice without TRPV1.Electronic supplementary materialThe online version of this article (doi:10.1186/s12906-016-1420-6) contains supplementary material, which is available to authorized users.
Highlights
Suo Quan Wan (SQW) is an effective traditional Chinese prescription on treated lower urinary tract symptoms (LUTS), and has been proved have modulation effect on the expression of transient receptor potential vanilloid 1 (TRPV1) in accordance with the recovery of bladder function of overactive bladder rat
This studies have provides evidences that treatment of SQW on the bladder function of overactive bladder symptom syndrome (OAB) is related to TRPV1 modulation effect [8]
The TRPV1−/− KO mice were grouped into the TRPV1 KO group, the SQW high dosage (1170 mg/kg) treated group (SQW H), and the SQW low dosage (585 mg/kg) treated group (SQW L), the selection of dosage of SQW is according to our previous studies [8]
Summary
Suo Quan Wan (SQW) is an effective traditional Chinese prescription on treated lower urinary tract symptoms (LUTS), and has been proved have modulation effect on the expression of transient receptor potential vanilloid 1 (TRPV1) in accordance with the recovery of bladder function of overactive bladder rat. Efficient bladder micturition is triggered primarily by bladder afferent nerve activities and the synthesis of somatic and autonomic efferent mechanisms that coordinate detrusor contraction and sphincter relaxation during bladder distension. The dysfunctions of these normal pathways are probably related to lower urinary tract storage disorders, such as urinary incontinence and. Results of TRPV1 expression in the bladder are in agreement with urodynamic change, according to the induction of OAB model and SQW treatment This studies have provides evidences that treatment of SQW on the bladder function of OAB is related to TRPV1 modulation effect [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.