Abstract

Abstract This study investigates the effect of a squealer tip geometry arrangement on heat transfer coefficient and static pressure distributions on a gas turbine blade tip in a five-bladed stationary linear cascade. A transient liquid crystal technique is used to obtain detailed heat transfer coefficient distribution. The test blade is a linear model of a tip section of the GE E3 high-pressure turbine first stage rotor blade. Six tip geometry cases are studied: 1) squealer on pressure side, 2) squealer on mid camber line, 3) squealer on suction side, 4) squealer on pressure and suction sides, 5) squealer on pressure side plus mid camber line, and 6) squealer on suction side plus mid camber line. The flow condition corresponds to an overall pressure ratio of 1.32 and exit Reynolds number based on axial chord of 1.1 × 106. Results show that squealer geometry arrangement can change the leakage flow and results in different heat transfer coefficients to the blade tip. A squealer on suction side provides a better benefit compared to that on pressure side or mid camber line. A squealer on mid camber line performs better than that on a pressure side.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.