Abstract

FePt films were prepared by magnetron sputtering deposition using Ar as the sputtering gas under different working pressures (0.3–0.7Pa). The effect of sputtering gas pressure on the microstructure, magnetic, and magnetoresistance properties has been investigated. The results show that the crystallization of FePt films is strongly dependent on the Ar sputter pressure. With the decrease of Ar working pressures, the fct phase forms and the coercivity (Hc) of FePt films rises under the same annealing temperature. As a result, the giant magnetoresistance (GMR) increases by 20% at the room temperature. At 0.7Pa, the anisotropy magnetoresistance (AMR) can be observed clearly at a low field. However, as the Ar pressure decreases, the increase of GMR leads to a degradation of AMR effect. We believe that the improvement of GMR effect results from the increase of magnetic anisotropy and spin polarization in the process of transformation from the soft magnetic fcc phase to the hard magnetic fct phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.