Abstract

This work deals with structural, electrical and mechanical characterization of Ti‒50.13Ni and Ti‒49.62Ni (at.%) shape memory alloys (SMAs) fabricated at different circumferential wheel velocities. The effect of wheel velocity, chemical composition and heat treatments are investigated. The characterization of crystallographic phases of the Ti‒Ni ribbons was carried out using X-ray diffraction. Electrical resistance variations as function of temperature (∆R/R %) were analyzed using a non-commercial technique, which consists in a thermal-adjustable bath apparatus revealing the temperatures of B2→R→B19´ two stage transformation, whereby the presence of R‒phase can be definitively confirmed. The Stress-Assisted Two-Way Memory Effect was measured by an own designed apparatus with an Linear Variable Differential Transformer captor and a current controlled heating, and results indicate that the as-spun condition, promotes the Stress-Assisted Two-Way Memory Effect. On the other hand, increments in Ni content tend to decrease transformation temperatures and high wheel velocities help to the R‒phase formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.