Abstract
People in these days spend approximately 6 % of their time in a means of transport. Air fresheners are frequently used in vehicles to mask odors; however, they can cause adverse health effects such as cardiovascular disease, systemic inflammation and autonomic dysfunction. This study aimed to identify the effects of air fresheners on the concentrations of particulate and volatile organic compounds (VOCs) in different vehicle cabins. Scanning mobility and optical particle sizers were used for the particle measurements. VOCs (e.g., BTEX and d-limonene) were collected using a Tenax TA. The products were sprayed for less than a minute. The study assessed three spray products (all trigger types), vehicle size (small, medium, and large), cabin temperature (10 °C, 20 °C, and 25 °C), and in-vehicle ventilation mode (all-off, recirculation, and external inflow modes). The particle concentration increased rapidly during the 1-min spraying of the products. The proportion of nanoparticles in the front seat (67.2 % ± 2.2 %) was 11.1 % ± 2.2 % lower than that in the rear seat (75.6 % ± 2.1 %). The spray product and vehicle size did not significantly affect the particle or VOC concentrations. With an increase in the temperature of the front seat, the proportion of nanoparticles increased by 25.3 % ± 3.2 %. Moreover, the maximum total VOC concentrations (front seat: 364.3 μg/m3; back seat: 241.3 μg/m3) were observed at 20 °C. Under in-vehicle ventilation, recirculation effectively reduced the overall particle concentration within the cabin; however, the generated VOCs circulated. The external inflow proved effective in cabin air purification by reducing the total VOC concentration to 56.0–57.2 % compared with other ventilation modes. These findings provide substantial insight into the persistence of particles and the dynamics of their dispersion, thereby enabling informed decision-making for particle-related risk management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.