Abstract

WC-10Co-4Cr cermet coatings were deposited on the substrate of AISI 1045 steel by using high-velocity oxygen-fuel (HVOF) thermal spraying process. The Taguchi method including the signal-to-noise (S/N) ratio and the analysis of variance (ANOVA) was employed to optimize the porosity and, in turn, the corrosion resistance of the coatings. The spray parameters evaluated in this study were spray distance, oxygen flow, and kerosene flow. The results indicated that the important sequence of spray parameters on the porosity of the coatings was spray distance > oxygen flow > kerosene flow, and the spray distance was the only significant factor. The optimum spraying condition was 300 mm for the spray distance, 1900 scfh for the oxygen flow, and 6.0 gph for the kerosene flow. The results showed the significant influence of the microstructure on the corrosion resistance of the coatings. Potentiodynamic polarization and electrochemical impendence spectroscopy (EIS) results showed that the WC-10Co-4Cr cermet coating obtained by the optimum spraying condition with the lowest porosity exhibits the best corrosion resistance and seems to be an alternative to hard chromium coating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call