Abstract

Lithium iron phosphate/carbon (LiFePO4/C) composites with high energy density were synthesized by wet ball milling, spray drying, and carbothermal reduction method. The effect of spray drying technological conditions on the performance of LiFePO4/C composites was systematically investigated. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge tests, etc. The results show that all as-prepared LiFePO4/C composites have a well-ordered olivine structure and spherical morphology. Compared with centrifugal spray drying technology, LiFePO4/C prepared by pressure spray has a smaller particle size and exhibits more uniform particle size distribution as well as better electrochemical performance. However, as the particle size of LiFePO4/C microspheres is decreased, the sphericity of particles becomes worse and tap density of materials steps down, resulting in poor processability in 14500 cylindrical battery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call