Abstract

Thermally sprayed coatings are often used to enhance the surface properties (wear resistance, corrosion resistance, etc.) of engineering components in order to extend their performance and service lifetime. Typically, the industrial components to be coated possess complex geometries and are fabricated using different materials, which can influence the deposited coating's microstructure and performance. High-velocity air fuel (HVAF) process is a relatively new thermal spray processing technique that has shown tremendous potential to deposit high performance coatings for durable industrial components. However, no detailed studies have been reported on HVAF sprayed coating formation mechanisms so far in relation to the spray angle and substrate properties, and the influence of coating material on the above. The objective of this work was to study the influence of spray angles and substrate materials on splat characteristics, coating microstructure evolution, properties and performance for two distinct coating materials.In this study, one cermet (WC-CoCr) and one metallic (Inconel 625) feedstock were deposited onto three different substrates (aluminium alloy, carbon steel and Hastelloy-X) utilising different spray angles (40°, 60° and 90°). The coating evolution was analysed utilising SEM/EDS, image analysis, and micro-indentation. To determine the tribological performance, coatings were subjected to dry sliding wear test utilising alumina ball as counter surface and specific wear rates were obtained.The results showed that initial splat characteristics were substantially altered on changing the substrate and the spray angle. However, the final coating properties were not affected significantly even though the deposition rate was reduced significantly at lower spray angle, suggesting the versatility of the HVAF process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call