Abstract
Turbochargers used in gasoline engines have their compressor outlet directly coupled to the engine inlet via the throttle valve. On sudden closing of the throttle, the compressor outlet is blocked, and the compressed air has no path to exit resulting in a compressor surge. Compressor recirculation valves are used to connect the outlet of the compressor to the inlet to recirculate excess air and thus reduce the compressor surge. Under normal operating conditions, when the valve is closed, the channel connecting the compressor inlet and the valve causes an inlet disturbance resulting in the reduction of compressor efficiency. Hence a steady state CFD analysis of a gasoline engine turbocharger compressor modelled with a recirculation channel at the inlet was conducted. The channel connecting the compressor inlet and the recirculation valve was observed to cause inlet aerodynamic disturbance resulting in a drop in compressor efficiency by 1%. To overcome this problem, splitters were used in recirculation channels and 80% recovery of loss was observed with the use of splitters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Automotive and Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.