Abstract

Time-dependent configuration interaction with a complex absorbing potential has been used to simulate strong field ionization by intense laser fields. Because spin-orbit coupling changes the energies of the ground and excited states, it can affect the strong field ionization rate for molecules containing heavy atoms. Configuration interaction with single excitations (CIS) has been employed for strong field ionization of closed shell systems. Single and double excitation configuration interaction with ionization (CISD-IP) has been used to treat ionization of degenerate states of cations on an equal footing. The CISD-IP wavefunction consists of ionizing single (one hole) and double (two hole/one particle) excitations from the neutral atom. Spin-orbit coupling has been implemented using an effective one electron spin-orbit coupling operator. The effective nuclear charge in the spin-orbit coupling operator has been optimized for Ar+, Kr+, Xe+, HX+ (X = Cl, Br, and I). Spin-orbit effects on angular dependence of the strong field ionization have been studied for HX and HX+. The effects of spin-orbit coupling are largest for ionization from the π orbitals of HX+. In a static field, oscillations are seen between the 2Π3/2 and 2Π1/2 states of HX+. For ionization of HX+ by a two cycle circularly polarized pulse, a single peak is seen when the maximum in the carrier envelope is perpendicular to the molecular axis and two peaks are seen when it is parallel to the axis. This is the result of the greater ionization rate for the π orbitals than for the σ orbitals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call