Abstract

The Jeans self-gravitational instability is studied for dense quantum viscous plasma with Hall term and intrinsic magnetization generated by collective electron spin. The quantum magnetohydrodynamic model is employed to formulate the basic equations of the problem. The dispersion relation is obtained using the normal mode analysis, and further reduced for both transverse and longitudinal modes of propagation. The transverse mode of propagation is found to be unaffected by the Hall term but affected by quantum effect, viscosity, and magnetization parameters. The Jeans criterion of instability in the transverse direction is modified by Alfven velocity, magnetization parameter, and quantum effect. The non-gravitating magnetized mode is obtained in the longitudinal direction, which is modified by Hall parameter and is not affected by quantum term, whereas the gravitational mode is unaffected by the magnetization parameter but affected by viscosity and quantum parameters. It is observed that the Jeans condition of instability is affected by the quantum term. The growth rate of Jeans instability is plotted for various values of magnetization, quantum, and viscosity parameters of the quantum plasma medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.