Abstract

Abstract A series of polypropylene hollow fiber membranes was fabricated by melt-spinning and stretching. The crystalline behavior and hard elasticity of precursor hollow fibers were studied by differential scanning calorimetry (DSC), elastic recovery and strain-stress curves. The structure and properties of membranes were investigated in detail by scanning electron microscopy (SEM), optical microscopy, pure water flux, and so on. The results showed that membranes with excellent structure and properties can be obtained at a spin-draw rate of 350 m/min and a stretching ratio of 200 %. The evolution of crystal structure was explored during the annealing and stretching processes by two-dimensional small-angle X-ray scattering (2D-SAXS). Shish-kebab structure was obtained during annealing for hollow fibers at a spin-draw rate of 350 m/min. The crystalline lamellae were destroyed and micropores were formed during the fabrication of membranes by stretching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.